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Abstract  

 

The  use  of a  high-resolution satellite-based precipitation product  on a  global-scale  is  attractive  to 

hydrological  applications. However, it  should be  systematically evaluated from  various  

perspectives  as  the  quality property  is  dependent  on the  geographical  and topographical  features  

of a  region. This  study comprehensively assesses  the  Climate  Prediction Center morphing 

technique  (CMORPH) precipitation product  over South  Korea. Two evaluation approaches, the  

general  evaluation using statistical  metrics  and the  detection evaluation (to measure  skill  in 

detecting precipitation and non-precipitation) using categorical  metrics, are  employed based on an 

18-year long-term  period of record. As  a  result, the  CMORPH  product  tended to underestimate  

precipitation over South  Korea, and the  level  of the  underestimation varied with the  seasons  and 

regions. The  overall  quality was  adequate  for hydrological  applications  that  require  precipitation 

data  at  the  annual-to-daily resolution but  not  at  hourly resolution. Skill  in detecting hourly 

precipitation in a  storm  event  was  60% of the  rain-gauge  data, and the  accuracies  of total  volume  

and peak value  were  45% and 40%,  respectively. The  quality in the  coastal  regions  and islands  

was  not  as  good as  in inland areas  at  low  altitudes. The  accuracy in a  wet  season was  better than 

that  in a  dry/winter season. Notably, the  CMORPH  precipitation product  was  not  suitable  for  

snowfall  data. Ultimately, the  CMORPH  product  at  hourly resolution needs  a  correction process  

using the local measurement systems for enhancing the quality property over South Korea.      

 

Keywords: High-resolution satellite  precipitation product;  CMORPH;  Multi-temporal  evaluation;  

Hydrological application; South Korea    
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1. Introduction  

The  role  of precipitation is  significant  in hydrological  processes  (Sorooshian et  al., 2011;  Alijanian 

et  al., 2017;  Yao et  al., 2020). Precipitation is  measured from  various  observing systems  on the  

ground and space. Thus, understanding the  properties  of measurement  data  is  fundamental  to know  

the  uncertainty and reliability (AghaKouchak et  al., 2011). Rain-gauge  data  is  considered as  the  

ground truth but  does  not  accurately represent  the  spatial  distribution of precipitation owing to the  

inherent  weakness  of point  measurement, observation density, and restrictive  environments  to 

install  an observing instrument  (Kim  and Yoo,  2014). On the  other hand, a  weather radar provides  

the  spatial  distribution of precipitation estimate,  which is  better than that  from  a  rain-gauge  system  

but  is  also subject  to limitations  in estimating the  accurate  precipitation due  to beam  blockage, 

beam  filling, beam  overshoot  effects, mixed-phase  precipitation, ground returns, rain-path 

attenuation, and variations  in the  rainfall  drop size  distribution (Stampoulis  and Anagnostou, 2012;  

Kim  et  al., 2015a). From  this  point  of view, the  advent  of satellite-based precipitation datasets  is  

attractive  to various  applications  as  it  has  many benefits  compared to the  two observing systems. 

This  study aims  to assess  a  high-resolution satellite-based precipitation product  from  various  

perspectives comprehensively.  

Up to date, a  number of the  satellite-based precipitation products  have  been developed, 

including the  Tropical  Rainfall  Measuring Mission (TRMM, Huffman et  al., 2007), the  

Precipitation Estimation from  Remotely Sensed Information using  Artificial  Neural  Networks  

method (PERSIANN, Hsu et  al., 1997), and the  National  Oceanic  and Atmospheric  Administration 

(NOAA) Climate  Prediction Center morphing technique  (CMORPH, Joyce  et  al., 2004). 

Undoubtedly for the  last  two decades, they have  advanced physical  sciences  and modeling in 

hydrology under the  seamless  gridded data  feature  and the  long-term  historical  records  on a  large-
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scale  (Zeweldi  et  al., 2011;  Sun et  al., 2016). They  have  also been considered the  only credible  

alternative  to complementing precipitation measurements  from  the  rain-gauge  and weather radar 

observing systems (Li and Shao, 2010; Jones et al., 2015; Chao et al., 2018).   

Among the  satellite-based precipitation products, the  CMORPH  is  considered a  high-

resolution precipitation data  as  it  provides  the  global  precipitation measurement  at  8 km  by 8 km  

and 30-minute  resolution. As  input  data, the  features  meet  the  requirements  of most  hydrological  

applications. Many studies  have  employed the  CMORPH  for studying physical  processes  and 

modeling in the  hydrologic  cycle  (Pan et  al., 2010; Zeweldi  et  al.,  2011), numerical  weather 

prediction (Ebert  et  al., 2007), crop monitoring (Romaguera  et  al., 2010), and rainfall  erosivity 

mapping (Kim  et  al., 2020). However, it  is  questionable  whether the  CMORPH  provides  fully 

qualified precipitation data  worldwide  (Peña  Arancibia  et  al., 2013;  Bayissa  et  al., 2017). In the  

same  context, operational  and decision‐making applications  tend not  to  integrate  the  satellite-based 

precipitation products  into  their system  because  of a  lack of information regarding the  associated 

uncertainties  and reliability of these  products  (Bitew  and Gebremichael, 2011;  Liechti  et  al., 2012). 

In general, the  performance  of the  satellite-based precipitation products  varies  significantly  with 

different  factors. The  first  factor is  related to the  inherent  features  of the  products. The  product's  

spatial  and temporal  resolutions  are  significant  for their application's  purpose  and scope  (Yao et  

al., 2020). It  is  a  well-known fact  that  the  performance  is  better at  coarse  resolution than at  higher 

resolution (Peng et  al., 2020). The  retrieval  algorithm  and system  as  the  inherent  feature  are  also  

important  to determine  the  accuracy of the  satellite  precipitation products  as  the  CMORPH  proved 

to perform  better than the  satellite  reanalysis  data, such as  Climate  Hazards  Group Infrared 

Precipitation with Stations.  The  second factor is  the  features  of  the  application regions  (Yao et  al., 

2020). It  is  a  challenge  to keep the  quality of satellite-based products  consistent  regardless  of 
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regions  because  various  geographical  and topographical  features  of the  globe  affect  the  detecting 

ability of sensors  on satellites  (Yilmaz  and Derin, 2014). From  this  point  of view, the  evaluation 

of satellite-based products  should be  documented to the  extent  possible  to establish confidence  for 

users  by focusing on the  application area  before  applying the  products  to  their  areas  of concern 

(Tan et al., 2015).  

In general, the  properties  of the  CMORPH  have  been verified  based on  statistical  metrics  

to quantify the  accuracy and on categorical  metrics  to measure  skill  in detecting precipitation  for  

various  regions:  South America  (Salio et  al., 2015), Malaysia  (Tan et  al., 2015), Ethiopia  (Hirpa  

et  al., 2009), Iran (Katiraie-Boroujerdy et  al., 2013;  Moazami  et  al., 2016;  Alijanian et  al., 2017), 

Tibetan plateau (Gao and Liu, 2013), and China  (Jiang et  al., 2010;  Jiang et  al., 2016;  Sun et  al., 

2016). The  previous  studies '  consistent  findings  are  that  the  property depends  on the  regions  in 

different  geographical  and topographical  features  and that  the  performance  increases  as  temporal  

resolution decreases. This  result  well  describes  the  need to evaluate  the  CMORPH  precipitation 

product  for understanding the  uncertainty and reliability before  employing it  to a  specific  region 

such as the Korean Peninsula.  

On the  other hand, the  studies  evaluated the  CMORPH  precipitation product  by comparing 

it  with the  rain-gauge  data  at  different  coarse  resolutions  from  annual  to daily. Therefore, the  

information about  the  strength and weakness  of the  CMORPH  precipitation product  from  the  

hourly and event-based perspectives  is  limited. Besides, most  studies  measured precipitation  

accuracy with the  lumped metrics, which cannot  capture  the  variability by seasons  that  determine  

precipitation in some regions.  

This  study presents  here  a  comprehensive  assessment  of the  CMORPH  precipitation 

product  over South Korea. The  efficient  management  of water resources  and early warning 
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systems  for extreme  events  is  a  challenge  as  most  storms  come  from  three  sides  of the  sea  over the  

peninsula. Also, owing to 70% of the  total  area  characterized by the  mountainous  regions, the  

ground-based measurement  systems  cannot  provide  the  consistent  quality of precipitation data  all  

over South Korea. Hence, the  use  of the  high-resolution satellite-based precipitation products  is  

attractive  from  these  perspectives. The  goal  is  to assess  its  capability as  precipitation data  for 

hydrological  applications. Not  only coarse  resolution (annual-to-daily) but  also hourly resolution 

is  considered. The  event-based evaluation is  also conducted to examine  the  usefulness  of the  

CMORPH  precipitation product  for precipitation cases  rather than non-precipitation cases. The  

assessment  of the  qualitative  and quantitative  properties  is  implemented using statistical  and 

categorical  metrics. Wet  and dry periods  are  considered to explore  the  strength and weakness  of 

the  CMORPH  precipitation product  in different  seasonal  variations. Rain-gauge  data  as  a  reference  

value  is  classified into four groups  in different  regions  and elevations  to assess  the  CMORPH  

precipitation product's quality properties in different geographical and topographical features.    

The  rest  of this  paper is  organized as  follows:  Section 2 introduces  application materials  

and methods. Section 3 represents  the  evaluation results  based on various  temporal  resolutions  

from  yearly to hourly and rain-gauge  locations. Section 4 describes  the  overall  assessment  of the  

CMORPH precipitation product and the findings.  

 

2. Material and Methods  

2.1 Application Area and Data     

South Korea  located in the  center of east  Asia  is  selected as  an application area, lying between 

latitudes  33°~39°  N.  and longitudes  124°~130°  E. The  total  area  is  approximately 99,373 km2. 

South Korea  is  the  southern area  of the  Korean Peninsula  surrounded by water on three  sides, the  
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Yellow  Sea  to the  west, the  East  Sea  to the  east, and the  South Sea  to the  south, and thus  vulnerable  

to storms  coming from  the  three  seas  at  all  seasons  (Kim  et  al., 2015b;  Kim  and Joo, 2015). Fig. 1 

shows  the  application domain, digital  elevation model  (DEM), and 48 rain-gauge  locations  used 

in this study.   

 

Figure 1  

 

South Korea  has  four seasons  with its  climatic  features, spring from  March to May, 

Summer from  June  to August, Fall  from  September to November, and Winter from  December to 

February (Kim  et  al., 2015b). The  annual  average  temperature  is  14.5°  Celsius, the  hottest  month 

is  August  as  the  monthly average  temperature  of 25 °  Celsius, and the  coldest  month is  January at  

-7°  Celsius. The  range  of annual  precipitation  is  roughly from  1,000 to 1,850 mm  (1,270 mm  on 

average). In general, a  wet  season is  from  June  to September, and 70% of annual  precipitation 

occurs  during this  season owing to the  monsoon and typhoons  (Kim  and Joo, 2015). A  period from  

October to February  is  referred to as  a  dry season,  and from  November to February is  referred to 

as a snow-dominated season (Joo et al., 2015).   

The  terrain is  mostly complex and mountainous  so that  it  is  not  easy to install  rain-gauge  

instruments  on the  ground and employ weather radars  due  to beam  blockage  (Kim  et  al., 2014;  

2015a). South Korea  has  two mountain ranges, Taebaeksanmaek and Sobaeksanmaek, as  shown 

in Fig. 1. The  Taebaeksanmaek mountains  are  located along South Korea's  eastern edge  and run 

along the  eastern coast. The  Sobaeksanmaek mountains  are  a  mountain range cutting  across  the  

southern region of South  Korea. The  two mountain ranges  divide  South Korea  into three  regions, 

the  West, East, and South regions  (hereinafter West, East, or South region), having different  types  
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of dominated precipitation during a  winter season. The  West  and East  regions  are  snow-dominated 

during the  winter due  to the  cold front  and snowstorms  from  the  north's  Siberian continental  air-

mass. The  South region is  warm  in all  seasons  compared to the  other two regions  and barely snows  

during the winter.  

Total  48 rain-gauges  precipitation data  from  the  Korea  Meteorological  Administration 

(https://data.kma.go.kr/cmmn/main.do) are  used as  a  reference  data  set  to evaluate  the  CMORPH  

precipitation product  on the  same  location. Long-term  data  from  1998 to 2015 year  is  used in this  

study. A  rain-gauge  data  and the  CMORPH  gridded data  covering the  area  of the  rain-gauge  

location are  paired. The  original  temporal  resolution of the  rain-gauge  data  used in this  study is  an 

hourly time  step. This  study implemented a  simple  aggregation process  to upscale  it  to  produce  

the daily-to-annual rain-gauge data for the CMORPH evaluation.  

In addition, it  should be  addressed about  a  matter of some  concern to a  discrepancy between 

the  spatial  resolutions  of a  rain-gauge  and the  CMORPH  precipitation, affecting the  CMORPH  

assessment. The  importance  of understanding the  discrepancy and its  effects  on evaluating the  

gridded precipitation products  (e.g., weather radar and satellite) has  been recognized for decades  

(Hendrick and Comer, 1970;  Zawadzki, 1973;  Harrold et  al., 1974;  Ciach and Krajewski, 1999). 

Many previous  studies  confirmed that  the  effect  of the  discrepancy on the  gridded precipitation 

assessment  depends  on temporal  resolutions  (Ciach and Krajewski, 1999;  Villarini  et  al.,  2008;  

Yang et  al., 2016). In general, the  effect  increased as  the  temporal  resolution increased. High 

temporal  resolutions  under an hour time  step were  affected by the  discrepancy of the  spatial  

resolutions  of the  two datasets, but  the  effect  in coarser temporal  resolutions  over an hour time  

step was  not  apparent  (Ciach and Krajewski, 1999;  Gabriele  et  al., 2008;  Kim  et  al., 2014). Some  

studies  attempted to reduce  errors  arising from  the  effect  of the  discrepancy by matching the  spatial  
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resolution of a  rain-gauge  with a  gridded precipitation data. Habib et  al. (2012) and Li  et  al. (2019) 

employed the  spatial  interpolation methods  to upscale  rain-gauge  precipitation data, corresponding 

to the  satellite  precipitation data's  spatial  resolution. However, the  spatial  interpolation methods  to 

upscale  rain-gauge  data  should be  carefully implemented because  its  performance  depends  on a  

rain-gauge  network density. It  could generate  other errors  in ungauged areas  (Kim  et  al., 2020). 

Since  this  study aims  to evaluate  the  CMORPH  precipitation product  in hour-to-annual  temporal  

resolutions, this  study assumes  that  the  effect  is  not  significant  in the  CMORPH  evaluation process.  

A  range  of altitudes  of the  rain-gauges  is  from  11 to 773 m, indicating that  the  rain-gauges  

are  spatially distributed in low  and high areas. Also, a  fraction of the  rain-gauges  is  located in 

coastal  regions  near the  three  seas  and Jeju-island. The  total  rain-gauges  are  divided into four 

groups  depending on geographical  and topographical  features:  Group1 is located near a  coastal  

region including Jeju island, Group2 located on under 100 m, Group3 located on between 100~200 

m, and Group4 located on over 200 m.   

 

2.2 CMORPH precipitation product   

The  CMORPH  is  a  high-resolution global  precipitation product, with a  history longer than ground-

based remote  sensing data  such as  weather radars. The  CMORPH  produces  global  precipitation 

estimates  at  an 8 km  × 8 km  resolution every 30 min. Overall, this  technique  exclusively uses  

precipitation estimates  derived from  low  Earth orbit  (LEO) satellite-derived passive  microwave  

(PWM) observations  (Joyce  et  al., 2004;  Xie et al., 2017; Kim et al., 2020). As  the  coverage  of the  

PMW-based retrievals  is  severely limited in the  half-hour window  owing to the  spatial  and 

temporal  sampling natures  of LEO  satellites  (even when multiple  satellites  are  used), the  

CMORPH  takes  advantage  of the  high temporal  resolution of the  geostationary satellite  infrared 
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(IR) imagery to create  motion vectors  for the  cloud systems. It  subsequently applies  the  cloud 

motion vectors  to the  available  PMW-based retrievals  to produce  continuous  precipitation 

estimates  over the  entire  globe. At  each half-hour window, the  IR data  availability  is  almost  

guaranteed at  a  given location and can be  used to extract  the  spatial  propagation of precipitation 

features. For additional  details  regarding the  CMORPH  technique, interested readers  are  referred 

to  Xie et al. (2017) and Chen et al. (2020).    

The  entire  CMORPH  dataset  in version 1.0 is  reprocessed and extended to cover 1998 to 

the  present. The  reprocessing includes  a  bias  correction using gauge  data  (Xie  et  al.,  2017). The  

reprocessing includes  a  bias  correction using gauge  data. According to Xie  et  al. (2017), the  bias  

correction process  is  implemented for the  raw  CMORPH  through probability density function 

(PDF) matching against  the  CPC daily gauge  analysis  over land and through adjustment  against  

the  Global  Precipitation Climatology Project  (GPCP) pentad merged analysis  of precipitation over 

ocean. The  bias-corrected CMORPH  exhibits  improved accuracy in representing the  spatial  

distribution patterns  and temporal  variations  of precipitation over the  global  domain. Among three  

types  of precipitation estimates  from  the  CMORPH,  30-min/8 km, 3-hr/0.25°, and 1-day/0.25°, 

this  study used the  CMORPH  in the  highest  temporal  and spatial  resolution,  and each 30-min 

estimate  is  accumulated to obtain the  hourly precipitation.  Four  temporal  resolutions, annual, 

monthly, daily, and hourly,  are  used,  and the  hourly precipitation evaluation includes  the  event-

based evaluation results.  

 

2.3 Evaluation Strategy  

2.3.1 Metrics   
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This  study employs  the  two evaluation approaches, quantitative  evaluation using statistical  metrics  

and detection evaluation (to measure  skill  in detecting precipitation) using categorical  metrics. For 

the  quantitative  evaluation, seven metrics  are  used (see  Table  1):  correlation coefficient  (CC), 

Nash-Sutcliffe  efficiency (NSE), percent-bias  (PBIAS), root  mean square  error (RMSE), volume  

error (VE), peak error (PE) and time  error (TE). CC exhibits  a  trend of estimated precipitation 

against  observations, NSE  shows  the  magnitude  of the  estimated error variance  compared to the  

observed data  variance  (Han et  al., 2019;  Kim  et  al., 2019), PBIAS  shows  a  ratio of the  sum  of 

residuals  to the  sum  of observed data  and RMSE  indicates  the  standard deviation of the  residuals  

between estimated and observed data. CC, NSE, PBIAS, and RMSE  measure  the  general  accuracy 

of the  CMORPH  precipitation data, and VE, PE, and TE  are  used as  additional  metrics  for the  

event-based evaluation.   

 

Table 1  

 

For the  detection evaluation, three  categorical  metrics  are  employed:  Probability of 

detection (POD), False  Alarm  Ratio (FAR), and Critical  Success  Index (CSI) (Ebert  et  al., 2007;  

Jiang et  al., 2016). These  categorical  metrics  measure  skill  in detecting precipitation and no-

precipitation in the  unit  time  (e.g.,  hourly). POD  (eq. 1) describes  the  fraction of the  number of 

precipitations  correctly identified by the  CMORPH  data  to the  total  number of precipitation 

occurrences  observed by rain-gauge  data. The  POD  ranges  from  0 to 1;  0 indicates  no skill,  and 1 

indicates  a  perfect  score. The  FAR (eq. 2) corresponds  to the  fraction of cases  identified by the  

CMORPH  data  but  not  confirmed by rain-gauge  data. The  CSI (eq. 3) combines  different  aspects  

of the  POD  and FAR, describing the  overall  fraction of the  precipitation occurrences  correctly 
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identified by the  CMORPH  data  in all  cases. The  CSI ranges  from  0 to 1;  0 indicates  no skill,  and 

1 indicates perfect skill.  

The three categorical metrics   can be represented by equations as follows:  

 
�

																																																																				POD = 	 ! 
  																																																									 (1)  �! + �" 

 
�

																																																																					FAR 	 #
 =  

 																																																										 (2)  �! + �# 

 
�

																																																																			CSI = ! 
 	 																																																				(3)  �! + �" + �# 

 

Here, tH, tM, and t F  are total cases corresponding to each case.   

 

Table 2   

 

Table  2 shows  the  most  common 2x2 form  of the  contingency table  to evaluate  all  possible  

precipitation cases. In the  table, Hit  (H) and Miss  (M) indicate  a  case  of the  CMORPH  correctly 

and incorrectly detecting precipitation while  precipitation is  observed from  the  rain-gauge, 

respectively. False  Alarms  (F) indicates  a  case  of the  CMORPH  detecting precipitation while  

precipitation is not observed from the rain-gauge.  

 

2.3.2 Classification of A Storm Event  

For  the  event-based evaluation, a  process  to classify a  storm  event  is  required to separate  and 

identify independent  storm  events  from  an entire  period of data.  This  study employs  a  classification 
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framework developed by the  United States  Department  of Agriculture  to define  and classify an 

independent  storm  event  (Kim  et  al., 2020).  Fig.  2 shows  the  conceptual  diagram  of the  

classification method initially developed for estimating rainfall erosivity.    

 

Figure 2  

 

Conditions to classify an independent storm event are as follows:   

•  Total precipitation (P) is more than 12.7 mm: P >= 12.7 mm  

•  When a  storm  has  precipitation more  than 6.35 mm  in 30 min, it  can be  classified as  an 

independent storm event even though total precipitation is less than 12.7 mm   

•  Inter-event  time  definition (IETD) is  6 hours, indicating that  between two individual  

storm events over 12.7 mm needs no precipitation duration for 6 hours at least.    

•  When total  precipitation for 6 hours  or greater than that  is  less  than 12.7 mm, 

precipitation can be ignored.  
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3. Results  

3.1. Coarse Resolution Evaluation  

3.1.1. Annual Precipitation  

Fig.  3 shows  the  evaluation results  of the  annual  precipitation, consisting of (a) a  comparison of 

the  annual  areal  average  precipitations  between the  CMORPH  and rain-gauge  data, (b) the  10-90th  

percentile  range  of relative  error (%) for all  rain-gauge  locations, (c) a  scatter plot  of the  annual  

precipitations  in the  dry and wet  years  and (d) the  probability density functions  (PDFs) of the  four 

statistical metrics.  

 

Figure 3   

 

In Fig. 3a, the  CMORPH  mean areal  precipitation was  well-matched with the  rain-gauge  

data, especially in terms  of representing a  change  (e.g.,  increasing and decreasing trends) of the  

annual  precipitation by year, but  consistently underestimated in all  years. Numerically, a  level  of 

underestimation was  around 10 % on average. In Fig. 3b, the  10-90th percentiles  range  of relative  

errors  was  formed around ±30%, indicating that  the  quantitative  accuracy greatly varied with the  

verification locations. This  result  suggests  that  various  geographical  and morphological  features  

might affect the detecting ability of sensors on satellites.  

In Fig.  3c,  a dry year is  defined as  a  year in which the  annual  precipitation is  less  than 30-

year mean annual  precipitation (1981-2010),  and a  wet  year is  just  the  opposite  year. Regardless  

of dry or wet  years, the  CMORPH  tended to underestimate  the  annual  precipitation against  the  

rain-gauge  data, especially in  a wet  year. From  the  regression lines, the  annual  precipitations  in 

wet  and dry years  are  biased around 16% and 5%,  respectively. Notably, fractions  of CC>0.70 and 
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NSE>0.0 were  higher  than 85% (see  Fig. 3d). The  median value  of PBIAS  was  -8.6%, indicating  

the  CMORPH  annual  precipitation is  underestimated. The  median value  of RMSE  was  227.8 

mm/yr, corresponding to 17.9% of the 30-years mean annual precipitation.     

 

Figure 4   

 

In Fig.  4, the  spatial  distributions  of CCs  and PBIADs  were  relatively  uniform, but  NSE 

and RMSE  were  not  uniform. Overall, the  quality of the  CMORPH  annual  precipitation in inland 

regions  was  better than that  in coastal  regions, and it was  apparent  from  the  NSE  and RMSE  results. 

Notably,  in coastal  regions, the  CMORPH  annual  precipitation had lower values  in correlation 

(CC<0.70) and negative  NSE  values. RMSEs  were  higher than 500.0 mm/yr, corresponding to 39% 

of the  30-years  mean annual  precipitation.  The  PBIAS  result  confirmed that  the  annual  

precipitation in inland regions  tended to have  a  low  bias  within ±10%, but  that  in coastal  regions  

showed overestimation, especially in Jeju island.   
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3.1.2. Monthly Precipitation  

The  evaluation results  of the  CMORPH  monthly precipitation data  are  shown in Fig. 5. Fig. 5 a-c 

are  the  same  as  Fig. 4 a-c. Fig. 5d, a  radial  graph, demonstrates  the  monthly medium  values  and 

10-90th percentile  ranges  of the  four statistical  metrics. In Fig. 5a, the  trend of monthly 

precipitation by seasonality was  quite  similar to the  rain-gauge  data, and the  monthly difference  

was  only 7.9 mm/month on average. In Fig. 5b, the  variability of the  relative  errors  in a  dry season 

was broader  than that  in a  wet  season as  the  range  was  around ±100% in a  dry season but  ±50% in 

a  wet  season. As  expected, it  is  confirmed that  the  CMORPH  monthly precipitation in a  dry season 

is  more  biased than that  in a  wet  season (see  Fig. 5c). In Fig. 5d, the  overall  property of CMORPH  

monthly precipitation was  quite  different  in the  seasons. Remarkably, the  dry months  tended to 

have  lower CCs, negative  NSEs, and PBIASs  with high variability  than  those  in the  wet  months. 

However, higher RMSEs  were  observed in the  significant  wet months, from  July to September, 

owing to a relatively higher monthly precipitation.  

 

Figure 5   

 

Fig. 6 shows  the  spatial  distributions  of the  statistical  metrics  of the  CMORPH  monthly 

precipitation. It  consists  of (a) January for a  dry month, (b) August  for  a  wet  month, and (c) 12-

month total  period results  to explore  the  quality depending on the  seasons.  In (a) January result, 

the  spatial  distributions  were  not  uniform, and the  spatial  features  could be  divided into three  by 

the  regions, i.e., the  West, East, and South, defined by the  mountain ranges, Taebaeksanmaek and 

Sobaeksanmaek. The  South region had higher CCs  and NSEs  and lower PBIASs  compared to the  

West  and East  regions. This  result  is  associated with a  dominant  type  of precipitation as  
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precipitation is  different  depending on the  regions  during the  winter. There  are  three  primary 

reasons for that.   

 

Figure 6   

 

The  first  one  is  the  Siberian air-mass  coming from  the  north and making a  cold front  on 

the  northern area  of the  Sobaeksanmaek mountain ranges,  while  the  South region is  usually 

affected by a  warm  front  from  the  south sea. Hence, the  South region is  much warmer than the  

West  and East  regions  during the  winter season. The  second one  is  the  two mountain ranges  that  

block a  cold front  and snow  clouds  coming into the  South region. The  third one  is  that  the  South 

region is  affected by a  low-pressure  system  formed in the  warm  South Sea  so that  rain is  the  

dominant  precipitation regardless  of seasons. Therefore, the  West  and East  regions  are  snow-

dominated areas  during the  winter season. The  South region is  a  rain-dominated area  regardless  of 

seasons  and barely have  snow  during the  winter season.  These  results  suggest  that  the  CMORPH  

snow data quality might not be as good as that of the CMORPH rain data.     

Notably, the  CMORPH  monthly precipitation in January was  considerably underestimated 

in Jeju island,  where  rain is  the  dominant  precipitation in all  seasons. The  correlation is  high,  the  

same  as  that  in the  South region, but  the  PBIAS  result  suggests  that  the  amount  of the  CMORPH  

monthly precipitation is  around 50% of the  rain-gauge  data. Because  the  four rain-gauge  locations  

are  affected by water as  the  locations  are  near the  sea  and the  CMORPH  grid covers  both the  land 

and seawater. This  is  a  well-known fact  that  the  CMORH  precipitation tends  to have  lower 

accuracy in the  area  near the  water. For instance, Kim  et  al. (2020) found that  the  CMORPH  tended 

to overestimate  precipitation near waterbodies  in the  United States. However, the  result  of this  
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study showed the  opposite  case  to underestimate  precipitation. This  finding is  important  as  it  

confirms  the  quality of the satellite  precipitation product  depending on the  region. Overall,  RMSEs  

were  under 30 mm/month, and higher values  were  observed in the  East  and South coastal  regions  

and Jeju island.  

Fig.  6b shows  the  results  in August  as  a  representative  of wet  months. The  spatial  

distributions  of the  four statistical  metrics  are  uniform, compared to the  results  in January. All  CCs  

and NSEs  are  above  0.7 except  that  in Jeju island.  Most  PBIASs  were  close  to zero,  indicating a 

low  bias. As  expected, the  CMORPH  tended  to underestimate  precipitation in Jeju island and the  

South Sea's  coastal  regions. The  RMSEs  higher than  120 mm/month were  observed in most  coastal  

regions and inland regions at high altitudes.  

Fig. 6c  shows  the  averaged results  for all  months. Overall, features  of the  spatial  

distributions  were  similar to the  results  in August. It  is  an understandable  result  as  most  results  (9 

months) except  that  in the  winter months  (3 months) showed better quality. The  averaged RMSE  

is  59 mm/month over South Korea, and RMSEs  in coastal  regions  and Jeju island were  higher than 

that in inland regions.  
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3.1.3. Daily Precipitation  

Fig.  7 shows  the  daily precipitation evaluation results, consisting of (a) a  comparison of fractions  

of no-precipitation and precipitation  detected from  the  rain-gauge  and CMORPH  data, (b) a  

comparison of fractions  of daily precipitation at  every 5 mm/day  interval  (50 mm/day in the  figure  

indicates  an  interval  of values  greater than 50 mm/day), and (c) a  distribution chart  of fractions  of 

relative error (%).  

 

Figure 7   

 

A  fraction of days  with precipitation is  around 25%,  and that  with non-precipitation is  

around 75% in both precipitation datasets, and it  decreased as  precipitation increased (see  Fig. 7a, 

b). Notably, there  was  only a  little  difference  between the  CMORPH  and rain-gauge  data, 

indicating skill  in detecting precipitation is  remarkable  from  the  perspective  of probability. In Fig. 

7c, the  25-75th  percentiles  range  of relative  error was  from  -53% to 150%,  and the  median value  

was  4.2%. The  relative  errors  were  densely formed in a  range  of negative  values  and be  sparely 

formed in a  range  of positive  values. This  result  suggests  that  the  CMORPH  daily precipitation 

has  a  high possibility of being  underestimated with low  variability and a  low  possibility of being  

overestimated with high variability.  

 

Figure 8   

 

Fig. 8 shows  the  spatial  distributions  of the  four statistical  metrics  of daily precipitation in 

dry and wet  seasons. Same  as  the  monthly results, the  quality property of the  CMORPH  daily 
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precipitation in a  wet  season was  better than that  in a  dry season, and the  spatial  distribution 

patterns  varied with the  seasons. In a  wet  season, most  rain-gauge  locations  represented CC>0.7, 

NSE>0.4, and -10<PBIAS<10, except  for some  of the  coastal  regions  and Jeju island  locations. 

The  overall  quality was  the  lowest  in  the  East  region regardless  of the  seasons. For  the  same  

reasons  described in the  monthly precipitation evaluation section, the  South region has  a  better 

PBIAS pattern than other regions in a dry/winter season.  

 

3.2. High-Resolution Evaluation  

3.2.1. Hourly Precipitation  

This  section addresses  the  evaluation results  of the  CMORPH  hourly precipitation  in the  four 

groups. Fig.  9 shows  the  Box and Whisker plot, representing the  four quartiles  ranges  and medium  

value  of the  statistical  metrics  in two seasons. As  expected, the  quality was  better in a  wet  season 

as the  median CCs  were  formed around 0.5, but  0.3 in a  dry season. The  25-75th  percentiles  range  

of NSEs  in a  wet  season was  narrowly formed around 0.0, indicating that  the  quality of the  

CMORPH  hourly precipitation is  regarded as  comparable  as  that  of the  averaged rain-gauge  

precipitation is. However, most  NSEs  in a  dry season were  formed in a  broader  range  of negative  

values. Considering the  results  at  all  temporal  resolutions, the  performance  decreased as  the  

resolution increased, which is  a  general  result. Regardless  of the  groups, the  quality properties  in 

a wet season were better than that in a dry season.  

 

Figure 9   
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From  PBIAS  results, it  is  firmly confirmed that  the  CMORPH  product  tended to 

underestimate  hourly precipitation regardless  of the  seasons  and groups. In all  cases, the  25-75th  

percentiles  of PBIAS  are  ranged from  -20 to -3.5%. RMSEs  in a  wet  season are  higher than those  

in a  dry season, which is  considered an  understandable  result  as  higher rainfall  is  commonly 

observed in a  wet  season. The  median RMSE  was  1.2 mm/hr in a  wet  season. Depending on the  

four groups, the  statistical  metrics'  properties  were  not  entirely  different  in a  wet  season, but  in a  

dry season a  range. Group 1 and 2 showed lower  and wider metrics  than those  in the  other two 

groups  in lower elevation regions, especially those  observed in CC, PBIAS, and RMSE  results. 

Among the  rain-gauge  locations  showing the  lower quality, most  rain-gauges  were  located in 

coastal  regions  and Jeju island. Group 4 at  high altitudes  showed slightly low  NSEs  and a  more  

comprehensive PBIAS range, but it was not significant.   

 

Figure 10   

 

Fig. 10 shows  POD, FAR, and CSI results  for the  four groups  and seasons  to examine  skill  

in detecting precipitation and non-precipitation regardless  of intensity. In all  seasons, most  PODs  

were  ranged from  0.30 to 0.70. The  median value  was  0.44, meaning that  correctly detected 

precipitation accuracy is  44% on average. The  accuracy in a  wet  season (51% on average) was  

higher than that  in a  dry season (32%). In a  dry season, there  were  no objectionable  differences  of 

PODs  depending on the  groups. However, in a  wet  season, there  was  a  noticeable  difference  

between Group 1 and 4 (coastal  and inland regions  at  high altitudes) and Group 2 and 4 (inland 

regions  at  low  altitudes). The  difference  was  10% on average. These  results  suggest  that  skill  in 

detecting precipitation varies with geographical and topographical features of a region.  

21 



  
 

 
 

[Type here] 

FARs  were  higher in a  dry season, indicating that  the  rate  of failure  to detect  hourly 

precipitation and non-precipitation is  high. Nevertheless,  there  were  no objectionable  differences  

between  the  four groups. The  mean value  of the  median FARs  in the  four groups  was  0.64. In other 

words, among 100 hours  of precipitation cases  identified by the  CMORPH, 64 hours  were  not  with 

precipitation, which is  incorrect  detection cases. Regardless  of the  four groups  and seasons, CSIs  

were  ranged from  0.2 to 0.5,  and the  median value  was  0.33. In other words, among 100 hours  of 

complex cases  (including non-precipitation and precipitation) identified by the  CMORPH, 33 

hours  were  correctly observed as  non-precipitation and precipitation. Like  the  other metrics, CSIs  

in a  wet  season were  higher than those  in a  dry season, and the  difference  was  0.2 (20%) on average.  

The  results  above  addressed skills  in detecting precipitation and in identifying non-

precipitation  without  considering precipitation intensity. Fig.  11 shows  POD, FAR, and CSI results  

in different  intensities. Skill  in  detecting various  precipitation intensities  is  verified. Thresholds  

ranging from  0.5 to 5.0 mm/hr are  applied by increasing 0.1 mm/hr. The  results  represent  a  change  

of the  median values  by thresholds. According to the  three  categorical  metrics  results, the  skill  was  

the  highest  at  0.5 mm/hr  and then decreased as  the  threshold increased. A  notable  difference  among 

the  groups  was  not  observed, but  the  skill  in Group  1 was  slightly lower  than the  other groups, 

especially in a  wet  season. The  difference  in  the  skills  in two seasons  seems  like  a  systematic  form  

consistent in all thresholds.  

 

Figure 11   

 

3.2.2. Event-Based Precipitation  
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The  event-based evaluation focuses  on verifying skills  in detecting an individual  storm  

event  and in measuring precipitation features. A  fraction of the  detected storm  events, total  volume, 

peak value, and timing errors  are  considered the  precipitation features. Fig. 12 shows  the  

evaluation results  of skill  detection in detecting individual  storm  events. In Fig. 12a, the  fraction 

is  a  ratio of storm  events  detected by the  CMORPH  to the  rain-gauge  data. The  detected storm  

event  is  defined as  a  case  where  the  CMORPH  detects  at  least  an hour of precipitation for a  storm  

event. For example, the  CMORPH  in Group 1 detected 76.7% of storm  events  while  was  not  able  

to detect  even an hour of precipitation for 23.3% of storm  events. A  fraction of detected storm  

events  was  78.3% on average  and not  considerably varied with the  groups. Fig. 12b shows  the  

PDFs  of the storm events    by duration, and the CMORPH    and rain-gauge results   are compared  for 

the  four groups  and total. Overall, the  PDFs  were  well  matched,  and the  difference  between the  

two datasets in the four groups was relatively   small.   

 

Figure 12   

 

Figure 13   

 

Fig. 13 shows  the  evaluation results  of timing error for the  detected storm  events. The  

timing error is  defined as  a  ratio of incorrectly detected times  of a  storm  event  to the  actual  duration 

identified by the  rain-gauge  data. For instance, the  CMORPH  detects  7 hours  of precipitation to a  

storm  event  with a  duration of 10 hours, indicating the  timing error is  30%. The  identified storm  

events  are  classified into three  types  of a  storm  event  by the  duration (d), 0<d<12, 12<d<24, 

24<d<36, and d>36. Fig. 13a  shows  a  representative  PDF  result  of the  timing errors  for 12<d<24 
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in Group 1. Overall, the  PDF  was  similar to a  normal  distribution form,  and it  suggests  that  the  

mean value  and standard deviation of the  PDF  were  meaningful  to analyze  the  features  of the  

timing error. The  mean and standard deviation values  of the  PDFs  by the  duration and group are  

analyzed in Fig. 13 c-d below.  

Fig. 13b shows  a  fraction of 0% (when the  CMORPH  correctly  detected a  storm  event's  

precipitation  for all  duration) timing error cases  by the  duration. As  expected, a  fraction decreased 

as  the  duration increased. The  fractions  were  under 5% for a  storm  event  with over 12 hours  of 

duration. Group 1 represented the  lowest  fraction at  all  durations, but  the  other three  groups  were  

quite  similar. In Fig. 13c  and d, the  mean and standard deviation values  decreased as  duration 

increased, indicating that  a  storm  event  with a  shorter duration has  lower errors  and variations. 

Group 1 had the  highest  mean value  and variance  than  the  other three  groups,  and Group 2 and 3 

were considered the better groups.  

 

Figure 14   

 

Fig. 14 shows  the  evaluation results  of total  volume  and peak value  errors  and RMSE  from  

the  four groups'  detected storm  events. It  consists  of two parts, (a) PDFs  of the  errors  and (b) 

features  (e.g.,  the  1st  and 3rd  quantiles  and median values) of the  PDFs. In the  total  volume  error 

result, the  CMORPH  tended to underestimate  a  storm  event's  total  precipitation  as  Q1 and Q3 were  

in a  range  of negative  values. The  median value  was  around -45%, indicating that  the  CMORPH  

measured only 45% of the  storm  event's  total  precipitation  compared to the  rain-gauge  data. The  

median peak error was  around -40.0%, suggesting that  the  CMORPH  precipitation data  might  not  

be  suitable  for analyzing extreme  cases. The  median RMSE  was  -4.3 mm, meaning the  CMORPH  
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hourly precipitation error during a  storm  event. All  errors  in Group 1 were  slightly higher than the  

others.  

 

4. Discussion and Conclusions  

This  study implemented the  CMORPH  precipitation product' s  assessment  at  the  annual-to-hourly 

resolutions  from  various  perspectives  of the  hydrological  applications  over South Korea. The  

preliminary results are as follows:   

1) The  quality properties  of the  CMORPH  precipitation data  varied with temporal 

resolutions. The  CMORPH  annual-to-daily precipitation data  met  the  requirements  for

hydrological  applications,  while  the  hourly precipitation was  not  as  good as  the  coarse 

precipitation data. Notably, the  CMORPH  tended to underestimate  precipitation

regardless  of temporal  resolutions. These  results  suggest  that  the  CMORPH 

precipitation data  is  useful  for water resources  management  and long-term  hydrologic 

simulations  that  require  the  coarse  resolution of precipitation. However, it  is  not 

appropriate  for hydrologic  applications  that  require  the  hourly resolution of

precipitation at least.  

2) The  accuracy of the  CMORPH  precipitation data  to detect  and estimate  precipitation

in a  storm  event  was  not  satisfied. The  median total  error of a  storm  event  was  around

45% of the  rain-gauge  data, and the  peak error was  40%. A  level  of skill  in detecting

precipitation and non-precipitation was 60% of the rain-gauge data.  

3) The  quality of the  CMORPH  precipitation was  affected by  geographical  features  and

seasons. Regardless  of temporal resolutions,  the CMORPH   precipitation in the coastal  
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regions and islands was not as good as in inland areas, especially at low altitudes. Also, 

the CMORPH precipitation data in a wet season was better than that in a dry season. 

Ultimately, the CMORPH hourly precipitation data need to correct a bias for enhancing 

the  quality  over South Korea. The  bias  correction  should be  implemented based on assessing  the  

CMORPH  precipitation data  as  conducted in this  study. We  expect  that  the  assessment  in this  study  

will  help understand the  property of the  CMORPH  precipitation data  over South Korea  and support  

further studies.  
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Metrics   Acronym 
 (Range)  Equation 

 Correlation 
coefficient  

 Nash-Sutcliffe 
 efficiency 

 Percent-bias 

  Root mean 
 square error  

  Volume error 

 Peak error 

 Time error  

 CC 
  [-1, 1] 

 NSE 
 (-inf, 1] 

 PBIAS 
  [-100, inf) 

 RMSE 
 (-inf, inf) 

 VE 
  [-100, inf) 

 PE  
  [-100, inf) 

 TE 
  [0, inf) 
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n"(!)*&+ 41 − 	 6 × 	100  (%) n" 
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Table 1 Statistical and error metrics used for evaluation    
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 Observed 
 Detected 

 Yes  No 

 Yes   Hit (H)    False alarms (F) 

 No  Miss (M)  Null  
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Table 2 Precipitation contingency table  
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Figure  1.  The  Korean Peninsula  and the  rain-gauge  locations  used in this  study. The  rain-gauges  

are  grouped as  Group1:  Coastal  area  or island, Group2:  elevation < 100m, Group3:  

elevation < 200m, and Group4: elevation > 200m.   

Figure 2. A conceptual diagram of separating individual storm events.   

Figure  3.  Evaluation results  of the  annual  precipitation:  (a) a  comparison of the  mean annual  

precipitation of the  rain-gauge  and CMORPH, (b) relative  error of each year for 18 years, 

(c) a  scatter plot  between  the  rain-gauge  and CMORPH  precipitation for wet  and dry  years, 

a  circle  indicates  the  annual  precipitation at  a  rain-gauge  location in a  year, and orange  

and blue  denote  a dry and wet  year respectively, and  (d) PDFs  of the  statistical  metrics  

(CC, NSE, PBAIS, and RMSE).   

Figure  4.  Spatial  distributions  of the  statistical  metrics  of the  annual  precipitation:  (a) CC, (b) NSE, 

(c) PBIAS, and (d) RMSE.  

Figure  5.  Evaluation results  of the  monthly precipitation:  (a) a  comparison of mean monthly  

precipitation of the  rain-gauge  and CMORPH, (b) relative  error (c) a  scatter plot  between  

the  rain-gauge  and CMORPH  monthly precipitation for wet  and dry years, and (d) radial  

graphs of the statistical metrics  (CC, NSE, PBAIS, and RMSE).   

Figure  6.  Spatial  distributions  of the  statistical  metrics  of the  monthly precipitation:  (a) January:  a  

dry/winter month, (b) August: a wet month, and (c) Total.  
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Figure  7.  Evaluation results  of the  daily precipitation:  (a) the  fractions  of precipitation  and no-

precipitation  from  the  rain-gauge  and CMORPH, (b) the  distribution of  the  fractions  by 

precipitation interval, and (c) the distribution of relative errors.     

Figure  8.  Spatial  distributions  of the  statistical  metrics  of the  daily precipitation:  (a) for a  dry 

season and (b) for a wet season.    

Figure  9.  The  Box and Whisker plot  of the  statistics  metrics  of the  hourly precipitation for the  four 

groups  and seasons:  (a) CC, (b) NSE, (c) PBAIS,  and (d) RMSE. Each box ranges  from  

the  lower quartile  (25th) to the  upper quartile  (75th). The  middle  line  indicates  the  median 

value  in the  box. The  whiskers  extend out  to the  largest  and smallest  values  within 1.5 

times the interquartile range. The circle presents the points beyond the whiskers.    

Figure  10.  PDFs  of the  categorical  metrics  for  the  four groups  and seasons:  (a) POD, (b) FAR,  and 

(c) CSI. Each box shows  the  relative  frequency of each metric,  and the  dotted vertical  line  

indicates  the  mean value  of the  index.  These  results  do not  consider precipitation intensity.  

Figure  11.  Categorical  metrics  results  considering the  precipitation intensity  for  the  four groups  

and seasons: (a) POD, (b) FAR, and (C) CSI.  

Figure  12.  Evaluation results  of the  event-based precipitation:  (a) the  fractions  of not-detected and 

detected cases and (b) the PDFs of durations of  a storm event.  

Figure  13.  Timing error results:  (a) the  PDF  of the  timing error for 12<d<24 in Group1, (b) a  

fraction of 0% timing error cases  by the  duration, (c) the  mean values  of the  PDFs  by 

duration, and (d) the standard deviations of the PDFs by duration.    

Figure  14.  Evaluation results  of total  volume  error, peak error, and RMSE  from  detected storm  

events  by group:  (a) the  PDFs  of each error and (b) the  1st  and 3rd  quantiles  and median 

values of the PDFs.   
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Fig. 1. The Korean Peninsula and the rain-gauge locations used in this study. The rain-gauges are 

grouped as Group1: Coastal area or island, Group2: elevation < 100m, Group3: elevation 

< 200m, and Group4: elevation > 200m. 
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Fig. 2. A conceptual diagram of separating individual storm events.   
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Fig.  3. Evaluation results  of the  annual  precipitation:  (a) a  comparison of the  mean annual  

precipitation of the  rain-gauge  and CMORPH, (b) relative  error of each year for 18 years, 

(c) a  scatter plot  between  the  rain-gauge  and CMORPH  precipitation for wet  and dry years, 

a  circle  indicates  the  annual  precipitation at  a  rain-gauge  location in a  year, and orange  

and blue  denote  a dry and wet  year respectively, and  (d) PDFs  of the  statistical  metrics  

(CC, NSE, PBAIS, and RMSE).   
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Fig.  4. Spatial  distributions  of the  statistical  metrics  of the  annual  precipitation:  (a) CC, (b) NSE, 

(c) PBIAS, and (d) RMSE.  
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Fig. 5. Evaluation results of the monthly precipitation: (a) a comparison of mean monthly 

precipitation of the rain-gauge and CMORPH, (b) relative error (c) a scatter plot between 

the rain-gauge and CMORPH monthly precipitation for wet and dry years, and (d) radial 

graphs of the statistical metrics (CC, NSE, PBAIS, and RMSE). 
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Fig.  6. Spatial  distributions  of the  statistical  metrics  of the  monthly precipitation:  (a) January:  a  

dry/winter month, (b) August: a wet month, and (c) Total.  
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Fig.  7. Evaluation results  of the  daily precipitation:  (a) the  fractions  of precipitation  and no-

precipitation  from  the  rain-gauge  and CMORPH, (b) the  distribution of the  fractions  by 

precipitation interval, and (c) the distribution of relative errors.     
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Fig. 8. Spatial distributions of the statistical metrics    of the daily precipitation: (a) for a dry season 

and (b) for a wet season.    
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Fig.  9. The  Box and Whisker plot  of the  statistics  metrics  of the  hourly precipitation for the  four 

groups  and seasons:  (a) CC, (b) NSE, (c) PBAIS,  and (d) RMSE. Each box ranges  from  

the  lower quartile  (25th) to the  upper quartile  (75th). The  middle  line  indicates  the  median 

value  in the  box. The  whiskers  extend out  to the  largest  and smallest  values  within 1.5 

times the interquartile range. The circle presents the points beyond the whiskers.    
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Fig.  10. PDFs  of the  categorical  metrics  for  the  four groups  and seasons:  (a) POD, (b) FAR,  and 

(c) CSI. Each box shows  the  relative  frequency of each metric,  and the  dotted vertical  line  

indicates  the  mean value  of the  index.  These  results  do not  consider  precipitation intensity.  
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Fig.  11. Categorical  metrics  results  considering the  precipitation intensity  for  the  four groups  and 

seasons: (a) POD, (b) FAR, and (C) CSI.  
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Fig.  12. Evaluation results  of the  event-based precipitation:  (a) the  fractions  of not-detected and 

detected cases and (b) the PDFs of durations of  a storm event.  
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Fig.  13. Timing error results:  (a) the  PDF  of the  timing error for 12<d<24 in Group1, (b) a  fraction 

of 0% timing error cases  by the  duration, (c) the  mean values  of the  PDFs  by duration, and 

(d) the standard deviations of the PDFs by duration.    
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Fig.  14. Evaluation results  of total  volume  error, peak error, and RMSE  from  detected storm  events  

by group:  (a) the  PDFs  of each error and (b) the  1st  and 3rd  quantiles  and median values  of 

the PDFs.  
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